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Abstract

In this paper, we propose an extension of semi-implicit models for the shallow water or Euler equations on staggered

Cartesian meshes to handle the presence of cut cells at the boundaries of the computational domain. Semi-Lagrangian

advection algorithms are also extended to staggered Cartesian meshes with cut boundary cells. A linear reconstruction

algorithm and radial basis function interpolation are used, respectively, to compute approximate trajectories and to

recover an accurate velocity field in cells intersected by the boundary. The effective accuracy of radial basis function

interpolators for semi-Lagrangian algorithms is assessed by simple numerical experiments. Timestep control techniques

in the computation of the semi-Lagrangian trajectories are also discussed. The accuracy of the resulting models for envi-

ronmental flows is demonstrated by a number of test cases simulating nonlinear open channel flows and baroclinic flows

over an isolated obstacle.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The use of Cartesian grids composed of rectangular cells does not allow for optimal representation of

complex geometries. Numerical methods employing either boundary fitted coordinate systems or unstruc-

tured grids (finite volumes, finite elements) are a well established way to overcome this problems. In some

environmental applications, however, these approaches may introduce other difficulties. Boundary fitted

coordinate systems lead to equations of motion with metric terms that become singular over steep
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orography (see e.g. the difficulties reported in [30,33]). This can result in systematic errors or loss of effi-

ciency for semi-implicit time discretizations, due to the fact that the condition number of the resulting

matrices depends on the orography steepness. Furthermore, boundary fitted coordinates are not easily

applicable in very high resolution simulations, e.g. for air or water quality modelling purposes, where even

vertical obstacles (buildings, piers) need to be considered. The use of unstructured grids for the vertical dis-
cretization yields an accurate description of the boundary, but, whenever gravity plays a major role, it im-

plies that the vertical discretization grid is not aligned with the direction of the main force acting on the

flow. As a consequence, more complex discretization approaches are required and many important related

physical processes (e.g., moist convection or suspended sediment transport) cannot be represented in a

straightforward way. Finally, for long term simulations of river and coastal morphodynamics, in which

complex domains evolve in time, the use of boundary fitted coordinates or unstructured grids could result

in possibly severe loss of efficiency due to extensive remeshing.

Although these difficulties do not prevent the application of boundary fitted approaches, they motivate
the investigation of discretization techniques which allow for an improved description of the boundaries

while retaining the accuracy, efficiency and simplicity of the standard discretizations on Cartesian grid in

absence of boundaries. These techniques can be loosely described as cut cell or shaved cell or partial step

approaches. Various attempts in this direction are documented in the literature, see e.g. [1,4,7,9–

13,24,22,25,37]. The cut cell approaches are nothing but more or less extensive applications of the finite vol-

ume discretization technique. In particular, the partial step approach (according to the classification of [1])

relies essentially on coupling the finite volume discretization of the divergence operator with standard cen-

tered finite difference approaches for the pressure gradients. It can be used to develop very efficient semi-
implicit, semi-Lagrangian time discretizations (see e.g. [4,10]) for which the matrices to be inverted in

the semi-implicit step have very simple structure and very good conditioning properties.

In this paper, we propose an extension of semi-implicit, semi-Lagrangian models for the shallow water or

Euler equations on staggered Cartesian meshes to handle the presence of cut cells at the boundaries of the

computational domain. In particular, we will show that an appropriate semi-Lagrangian discretization cou-

pled to the partial step approach allows to achieve sufficient accuracy for some environmental applications,

even at coarse resolutions, both for the vertical and the horizontal discretizations. The proposed extension

of semi-Lagrangian algorithms relies essentially on interpolation algorithms for the velocity field in the
boundary cells, which allow to improve significantly the accuracy of the computed fields with respect to

those obtained with simple Cartesian grids without cut cells. It will also be shown that the results obtained

compare well with those produced by models employing boundary fitted coordinates. Specific applications

targeted for the methods developed here are river hydraulics and high resolution mesoscale modelling.

In Section 2, the proposed extension of semi-implicit models is motivated and described. In Section 3, the

basic features of the semi-Lagrangian method will be reviewed. In Section 4, trajectory approximation tech-

niques based on Euler or Runge–Kutta methods with substepping will be described. It will also be shown

how to choose the timestep for the trajectory computations so as to avoid that the trajectories cross the
boundary lines in either full or cut cells. In Section 5, a linear interpolation technique for the velocity field

will be discussed, which allows to impose the free-slip boundary condition exactly along the boundaries of

cut cells. In Section 6, results of numerical tests will be presented, in which the proposed algorithm was

employed in the computation of the backward trajectories starting from a given stationary velocity field.

In Section 7, interpolators based on radial basis functions will be briefly described, along with an evaluation

of their effective accuracy in cases relevant for the targeted applications. It will be shown that these inter-

polation algorithms can be advantageous even for standard Cartesian grids. In Section 8, results obtained

with full two-dimensional semi-Lagrangian models including nonlinear advection will be presented, which
show how the combination of the linear reconstruction described in Section 5 and the radial basis function

interpolators allows to achieve rather accurate results on a number of test cases. Some conclusions and

plans for applications to three-dimensional models will be presented in Section 9.
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2. Semi-implicit modelling of environmental flows on staggered Cartesian grids with cut cells

The two-dimensional shallow water equations will be used as a model problem to introduce the key fea-

tures of the proposed discretization approach. In particular, consider
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Here, g is the free surface elevation above a constant reference level, H is the total fluid depth, U, V are the

components of the vertically averaged velocity vector in the x, y directions, respectively, g is the gravita-
tional acceleration and c is the bottom friction coefficient.

Our starting point will be a finite difference discretization on a Cartesian grid with C-type staggering of

the discrete variables, as commonly employed in MAC-type discretizations [20] of two dimensional fluid

flow (see Fig. 1). The discrete values of the velocity component U are defined at the half integer nodes

ðiþ 1
2
; jÞ and those of the velocity component V are defined at the half integer nodes ði; jþ 1

2
Þ, while discrete

scalar variables like g are defined at integer nodes (i,j). A finite difference, semi-implicit discretization of

Eqs. (1) with this approach yields
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Fig. 1. Variable arrangement on a staggered C-grid cell.
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Here, FUn
iþ1

2
;j; FV n

i;jþ1
2
represent the discretization of the nonlinear momentum advection terms. In the mod-

els we are concerned with, this will be performed by a semi-Lagrangian method (see the more detailed

description and the references in Section 3). a is the averaging parameter used in the Crank–Nicolson time-

stepping approach. Linear stability analysis shows that for a P 1
2
the method is unconditionally stable. Fur-

thermore, substitution of Eqs. (2) and (3) into Eq. (4) yields an algebraic problem to be solved at each
timestep whose matrix is symmetric, positive definite and diagonally dominant. This discretization was

introduced in [8] and has been used successfully in a number of practical applications, see e.g.

[9,11,19,39]. However, due to the use of rectangular cells, results can be quite inaccurate when the bound-

aries are not parallel to the coordinate directions. For demonstration purposes, we will consider the appli-

cation of this method to simulation of open channel flow in a straight channel that is not aligned with the

coordinate directions. In this case, a steady state analytic solution exists, which allows to compute the dis-

cretization errors. The details of the test configuration are described in Section 8.1. The spatial resolution is

such that the channel width corresponds to approximately 10 grid cells. The relative errors obtained with
discretization (2)–(4) are shown in the first line of Table 1. It can be observed that results are quite poor, as

expected, in spite of the fact that a high order interpolation method (see Section 7) was employed in the

semi-Lagrangian scheme. Since the steady state solution is also the solution of the equations obtained from

(1) by omitting the nonlinear advection terms, the same test was repeated by computing the solution to this

simplified problem. The results are reported in the second line of Table 1. It can be observed that, while

results for the velocity field still display large errors, the error on the free surface elevation has decreased

by one order of magnitude. This identifies the discretization of the advection terms as one of the main

sources of error when using regular Cartesian grids to approximate irregular boundaries.
We consider now the introduction of an improved description of the boundaries in the context of a Car-

tesian grid approach. We assume that the domain boundaries are described by segments of straight lines

and that each boundary cell is intersected by at most a single straight line (see Fig. 2). This a priori limi-

tation rules out too complicated subgrid behavior of the boundaries, but it is sufficiently general to allow

for appropriate boundary description in most environmental flows.

Let diþ1
2
;j, di;jþ1

2
denote the fractions of the cut cell sides within the computational domain in the x, y direc-

tions, respectively (see Fig. 3). It should be remarked that velocity component locations along the cut cell

edges are now moved to the midpoint of the part of the edge that belongs to the computational domain.
Denote now the area of the cut cell (i,j) by Ai,j and let Hi;j ¼ Ai;j

DxDy. The analog of the previous discretiza-

tion of the continuity equation is now
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In principle, the discretization of the momentum equations should also be modified to take into account

the cut cells. In the approach we propose, however, no modification is introduced in the discretization of

the free surface gradients in the momentum equations, along the lines of the approach used in the partial
1

tive errors with respect to analytical solution for steady state straight channel flow for various model configurations

Water depth U V

cells 0.1 0.56 0.73

cells, no advection 1.45 · 10�2 0.4 0.65

lls, no advection 3.39 · 10�5 2.2 · 10�3 2.02 · 10�2



Fig. 2. Cut cells produced by piecewise linear approximation of the domain boundary.

Fig. 3. Definition of the cut cell side fractions.
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step discretizations (see e.g. [4,10,11]). This results in a loss of second order accuracy at the boundaries for

the approximation of the free surface gradients. On the other hand, this avoids the introduction of skew

symmetric terms in the algebraic problem resulting from the semi-implicit discretization, in contrast to ap-
proaches employing more accurate discretizations of the gradient operator at the boundary (see e.g. [24]).

Our point is that this loss of accuracy does not make the method useless for environmental applications. In

order to give evidence for this, the previous channel flow test was repeated, using now the discretization (5)

and omitting again the nonlinear momentum advection terms. The results are shown in the third line of

Table 1. It can be seen that now the solution is computed with a discretization error of about 2% for



358 G. Rosatti et al. / Journal of Computational Physics 204 (2005) 353–377
the velocity field and much smaller for the free surface elevation. This level of accuracy is sufficient for

many realistic applications. For example, typical tidal gauges only allow to measure the free surface fluc-

tuations to within approximately 1%. Thus, provided that the same accuracy achieved in this test can be

obtained also in the discretization of the complete equation set (1), the proposed approach could be a useful

tool for environmental applications. For this reason, an accurate extension of the semi-Lagrangian method
to Cartesian grids with cut cells will be considered in the next section.
3. The semi-Lagrangian method

The semi-Lagrangian method (SL) has been widely used in environmental applications (see e.g. [36]),

since it allows to achieve very accurate discretization of the nonlinear advection terms. SL is especially effi-

cient when applied to structured Cartesian grids. However, in applications to domains with complex geom-
etry, great care has to be taken when implementing the two key steps of SL methods – i.e., approximation

of the Lagrangian paths and interpolation at the departure point of the Lagrangian trajectory – to achieve

an effectively accurate discretization close to the boundary. Typical results of inaccurate implementations

are characteristic lines that cross domain boundaries as well as excessive momentum loss and spurious vor-

ticity production at the boundaries.

The semi-Lagrangian approximation of the advection equation
dc
dt

¼ oc
ot

þ~v � rc ¼ 0 ð6Þ
for a quantity cð~x; tÞ transported by the velocity field~vð~x; tÞ is based on the numerical approximation of the

Lagrangian particle paths, that can be identified as solutions of the ordinary differential equations
d~x
dt

¼~vð~xðtÞ; tÞ: ð7Þ
More specifically, consider the case of a two-dimensional problem and denote by cnþ1
i;j the numerical solu-

tion of Eq. (6) at time tn + 1 = Dt(n + 1), where Dt is the constant timestep of the time discretization and

nodes (i,j) are the cell centers of a staggered, C-type finite difference grid, with spacings Dx, Dy, in the

x,y directions, respectively. The semi-Lagrangian discretization approach aims at determining an approx-
imate value~x� for the starting point at time tn of the Lagrangian trajectory reaching (iDx, jDy) at time tn + 1.

For this purpose, Eq. (7) is solved backward in time with initial datum~xðtnþ1Þ ¼ ðiDx; jDyÞ and up to time

tn, thus determining a value for~x�. For each gridpoint (i,j), the new value of c is then defined as
cnþ1
i;j ¼ cð~x�; tnÞ; ð8Þ
where an appropriate interpolation method is used to reconstruct the value of the solution at~x�, which gen-

erally does not belong to the discretization grid. It is to be remarked that, in most implementations of the

semi-Lagrangian methods, also the computation of the approximated backward trajectory requires an

interpolation of the velocity field in some of the intermediate steps necessary for the solution of Eq. (7).
The choice of the most appropriate interpolation methods depends on the problem under consideration.

Cubic Lagrange or spline interpolation have been used in many applications on Cartesian rectangular grids

(see e.g. [36]). In the context of finite element discretizations, the finite element interpolation operators are

generally used, see e.g. [27,29,31]. More recently, other interpolation techniques such as kriging have also

been applied successfully in [26]. In this paper, a similar approach will be pursued, using radial basis func-

tions reconstruction algorithms. These techniques have already been used successfully in the context of

semi-Lagrangian methods (see e.g. [3]) and have been applied to the functional reconstruction step in accu-

rate conservative schemes on unstructured grids (see e.g. [35]). It will be shown in Section 7 that this type of
interpolation allows to provide sufficient accuracy also close to cut cell boundaries.
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For the determination of~x� by solution of Eq. (7) backwards in time, implicit methods are usually em-

ployed in most operational implementations of the semi-Lagrangian method (see e.g. [36]). The conver-

gence criterion of these methods requires in general a restriction on the so-called Lipschitz number (see

e.g. [34]). However, other approaches based on the approximation of the trajectories by Runge–Kutta

methods with timesteps shorter than the global timestep Dt have also been applied successfully (see e.g.
[4,8,17,18]), especially in problems with complex geometries. For these approaches, a local Courant–Fried-

richs–Lewy criterion must be satisfied, in order to avoid that the approximated trajectories cross each other

or intersect the boundaries. These techniques will be reviewed in Section 4 along with their extension to

computational domains with cut cells.
4. Substepping methods for the approximation of trajectories

Substepping methods for the approximation of the backward trajectory in a semi-Lagrangian method

consist simply in the discretization of Eq. (7) by standard ODE solvers with a timestep Ds that is a fraction

of the timestep Dt. More specifically, let Ds ¼ Dt
N , where N is to be conveniently chosen later, let

sk = tn + 1 � kDs and let ~xðNÞ ¼ ðiDx; jDyÞ denote the gridpoint reached at time tn + 1 by the trajectory to

be approximated. Euler or Runge–Kutta methods can be used to go back along the trajectories. For second

order accuracy one has for k = 0, . . .,N � 1,N
~xðk�1Þ;� ¼~xðkÞ � Ds~vð~xðkÞ; skÞ;

~xðk�1Þ ¼~xðkÞ � Ds
2

~vð~xðk�1Þ;�; sk � DsÞ þ~vð~xðkÞ; skÞ
h i

:
ð9Þ
The desired approximation of ~x� is obtained by setting ~x� ¼~xð0Þ. In practical applications of the semi-

Lagrangian method, the velocity field is also the output of a numerical method (in the case of nonlinear

momentum advection, exactly the same method is used). Furthermore, the flow field is assumed to be suf-

ficiently smooth. Therefore, velocities at intermediate time values such as~vð~x; skÞ can be replaced by con-

sistent extrapolations from the values at previous timesteps without degrading the formal accuracy of
the method. Taking s 2 [tn,tn + 1], the appropriate extrapolation formula for the second order scheme is gi-

ven by
~vð~x; sÞ ¼ 1þ s� tn

Dt

� �
~vð~x; tnÞ � s� tn

Dt

� �
~vð~x; tn�1Þ: ð10Þ
In many applications the velocity field can be also taken to be constant in time over the interval [tn,tn + 1]

and equal to its extrapolated value at time t þ Dt
2
, without degrading the effective accuracy of the method.

Furthermore, as remarked previously, for each substep k an interpolation must be performed in order to

compute the velocity at~xðkÞ and at the other intermediate points. At this stage, bilinear interpolation is usu-

ally recognized to be sufficiently accurate (see e.g. [36]) and piecewise linear interpolation has also been used
with good results in [4,8]. Therefore, each of the N substeps can be performed at a low computational cost.

In absence of boundaries, the substeps Ds are chosen so that the departure point is tracked back crossing

at most one cell for each substep, in order to avoid different trajectories crossing each other (see e.g. [5,8]). If

linear interpolation is used, it was shown in [8] that an appropriate upper bound is given by
Ds 6 minði;jÞ
Dx

juiþ1
2
;jj
;

Dy
jvi;jþ1

2
j

" #
: ð11Þ
Since in general only a few cells in the whole computational domain display large Courant numbers, it is

convenient to compute local estimates for Ds, as suggested e.g. in [5]:
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Dsi;j 6 minðh;lÞ2I i;j
Dx

juhþ1
2
;lj
;

Dy
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2
j

" #
; ð12Þ
where
I i;j ¼ fðh; lÞ : i� 2 6 h 6 iþ 1; j� 2 6 l 6 jþ 1g:

In the case of simple boundaries, these conditions are also sufficient to ensure that trajectories do not

leave the computational domain. However, this does not hold for an arbitrary shape of the boundary. Con-

sider for example the configuration in Fig. 4. Assuming that the discretization step has unit length, that the
velocity components have their maximum value uiþ1

2
;j ¼ ui�1

2
;j ¼ vi;jþ1

2
¼ vi;j�1

2
¼ 1 in the corner cell (i, j) and

that the final point for the trajectory is in the center of the cell, it is easy to see that for
ffiffiffi
2

p
=2 < Ds < 1

condition (11) is satisfied, but the departure point is beyond the domain boundary.

In the case of cut cells, the problem is even more complex and the upper bound for Ds has to take into

account the irregular shape of the boundary cell. In principle, the optimal value of Ds can be obtained by

the following steps:

(1) given a point P with coordinates (x0,y0) along the computed trajectory, evaluate the velocity vector;
(2) a point (X,Y) along an approximated backward trajectory is obtained using this constant value of the

velocity vector:
X ¼ x0 � t uðx0; y0Þ;

Y ¼ y0 � t vðx0; y0Þ;

it is to be remarked that (X,Y) may represent an intermediate value of the solution, as required for

example in Runge–Kutta methods

(3) the intersection (xc,yc) of the approximated trajectory with the straight line which represents the cut

cell boundary is computed

(4) the collision time tc(x0,y0) necessary to reach the boundary in a single step is obtained dividing the dis-

tance L between the starting point (x0,y0) and the crossing point (xc,yc) by the norm of the velocity

vector:
Fig. 4. Configuration with semi-Lagrangian trajectory leaving the computational domain.
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tcðx0; y0Þ ¼
L
jV j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � xcðx0; y0ÞÞ

2 þ ðy0 � ycðx0; y0ÞÞ
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðx0; y0Þ þ v2ðx0; y0Þ

p ð13Þ
(5) the upper bound for Ds is taken to be the minimum value of tc(x0,y0) " x0,y02 the cut cell domain.

The function (13) has been computed for various specific cell configurations and velocity fields sat-
isfying the inviscid free-slip boundary condition, using the reconstruction algorithm described in Section

5. Empirical evidence shows that tc(x0,y0) is generally almost constant throughout the domain of a cut

cell. Thus, there is some confidence that a reasonable upper bound for Ds can be achieved. In practical

implementations, such an upper bound is derived as follows. Let dxiþ1
2
;j; d

y
i;jþ1

2

denote the cut cell sides

fractions that are within the computational domain (see Fig. 3), as defined in Section 2. The estimate

is then given by
Dsi;j 6 /min

min
ðh;lÞ2Ii;j

dxhþ1
2
;l

max
ðh;lÞ2I i;j

juhþ1
2
;lj
;

min
ðh;lÞ2Ii;j

dy
h;lþ1

2

max
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2
j

2
4
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where uiþ1
2
;j; vi;jþ1

2
are the value of the velocity components defined on the sides of the cell and / is a security

factor, that was generally taken to be equal to 1
2
. It should be remarked that, in this way, only heuristically

justified conditions are obtained, which ensure that the trajectory does not cross the cut cell solid boundary,
as long as the particle is still within the same cell at the end of the substep. If the position at the end of the

substep is in a neighbouring cell, these conditions are not in principle sufficient to guarantee that the solid

boundary within that neighbouring cell has not been crossed. Generally, however, since imposing the prop-

er boundary condition along the whole boundary line yields velocity fields whose normal components close

to the boundary are effectively small (see e.g. Figs. 5–7 in Section 5), criterion (14) was found to be sufficient

and no trajectory was observed to leave the computational domain in any of the tests performed.
5. Reconstruction of the velocity field within a cut cell

A linear reconstruction algorithm will now be introduced, which allows to recover a vector field

from the staggered velocity components in cut boundary cells. The purpose of this algorithm will be

mainly to allow for reconstruction of the velocity field in the computation of the Lagrangian trajecto-

ries. As explained in Section 1, only cut cells intersected by a single straight line will be considered,

along with a C-type variable staggering. A local coordinate system x = (x,y) is introduced, whose origin

is at the lower left corner of the Cartesian rectangular cell. Denote by xr = (xr,yr) the intersection of the
straight boundary line with the y axis. The boundary line is then given by y ¼ � n1

n2
ðx� xrÞ þ yr, where

n = (n1,n2) is the normal direction to the boundary. For vertical boundary lines the shape of the cell is

the same as for full cells, so this special case will not be considered further. Since discrete velocity com-

ponents are defined at different grid locations, some interpolation or reconstruction algorithm must be

applied if a two-dimensional vector field U = U(x) is to be defined. A generic linear reconstruction of

the velocity field is given by
UðxÞ ¼ Ûþ Ax; ð15Þ
where
A ¼
a b

c d

� �
; x ¼

x

y

� �
; Û ¼

û

v̂

� �



Fig. 6. Reconstructed velocity field in a trapezoidal cut cell of side L and u(1,0.5)/L = 1 s�1, v(0.9,1)/L = �1.7 s�1, v(0.6,0)/L = 1 s�1.

Fig. 5. Reconstructed velocity field in a triangular cut cell with side length L, u(1,0.3)/L = 0.8 s�1, v(0.6,0)/L = 1.5 s�1.
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and û; v̂ are constants that represent the value of U(x) at the origin of the coordinate system. The six coef-

ficients û; a; b; v̂; c; d are to be determined by imposing appropriate conditions. At each point x0, y0 for

which a velocity component is known one has e.g.
u0 ¼ ûþ ax0 þ by0:
Furthermore, appropriate boundary conditions have to be prescribed along the boundary line. In this

work, only free-slip boundary conditions will be considered. This is not entirely general and reconstructions
not relying on this assumption could also be investigated. It is possible that, when surface stresses are pre-



Fig. 7. Reconstructed velocity field in a pentagonal cut cell with side L and u(0,0.5)/L = �1 s�1, u(1,0.8)/L = �0.1 s�1, v(0.5,1)/L = 0.1

s�1, v(0.1,0)/L = 1 s�1.
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sent, a different boundary condition would be necessary. On the other hand, in all the applications of the

semi-Lagrangian approach to the Euler or shallow water equations with turbulent viscosity terms, the fluid

parcel trajectories are computed by approximate solution of Eq. (7) (see e.g. [36]), which strictly speaking

only holds in the case of inviscid advection. Thus, if the algorithm is applied in the context of the trajectory
approximation, this appears to be consistent with a general implicit assumption underlying the semi-

Lagrangian method. Requiring the free-slip condition
U � n ¼ 0
to be satisfied for the vector field given by Eq. (15) along the whole line segment of equation

y ¼ � n1
n2
ðx� xrÞ þ yr; results into the conditions
x an1 � b
n21
n2

þ cn2 � dn1

� �
þ ûn1 þ bn1

n1
n2

xr þ yr

� �
þ v̂n2 þ dn2

n1
n2

xr þ yr

� �
¼ 0: ð16Þ
This will be true for all the x values within the cell if
an1 � b
n21
n2

þ cn2 � dn1 ¼ 0; ð17Þ

ûn1 þ bn1
n1
n2

xr þ yr

� �
þ v̂n2 þ d n1xr þ n2yr½ � ¼ 0: ð18Þ
Other conditions on the coefficients û; a; b; v̂; c; d can be derived assuming that the flow within the cell is
irrotational,
ou
oy

� ov
ox

¼ 0;
which yields either the condition b � c ¼ 0 or the conditions b ¼ c ¼ 0. Since this assumption only concerns

the subgrid reconstruction of the velocity field, it does not imply any restriction for the applicability of the
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method to rotational flows. Imposing these conditions allows to determine uniquely a velocity field recon-

struction in each of the possible cases of cut cell shape:

� Triangular cut cells: two normal velocity components are known, two conditions result from imposing

zero normal velocity along the boundary and two conditions result from imposing b = c = 0.
� Trapezoidal cut cells: three normal velocity components are known, two conditions result from imposing

zero normal velocity along the boundary and one condition results from imposing b � c = 0

� Pentagonal cut cells: four normal velocity components are known, two conditions result from imposing

zero normal velocity along the boundary.

The resulting linear system in the six unknowns û; v̂; a; b; c; d is solved by the Gauss method with piv-

oting. It is to be remarked that also the customary bilinear interpolation in square cells away from the

boundary can be derived along the same lines, assuming the four normal velocity components to be known
and requiring the coefficients b,c to be equal to zero. This allows to avoid spurious vorticity production and

yields automatically the correct value for the discrete divergence.

Examples of reconstructed velocity fields on these three types of cut cells are shown in Figs. 5–7, respec-

tively. It can be seen how the free-slip boundary condition is effectively imposed along the whole boundary.

In order to assess the accuracy of the resulting method, the velocity field for potential flow around a cyl-

inder of radius R0 was considered, so that
Table

Accur

Dx

1

0.5

0.25

0.125
U ¼ U 0 þ
U 0R2

0

2R3
� 3

2

R3
0U 0ðx� x0Þ2

R5
;

V ¼ � 3

2

R3
0U 0ðx� x0Þðy � y0Þ

R5

ð19Þ
for the Cartesian velocity components. Here, R2 = (x � x0)
2 + (y � y0)

2 and (x0,y0) are the coordinates of

the cylinder center. This velocity field was reconstructed on the Cartesian grid with cut cells by the ap-

proach outlined in this section. The values U0 = 10 m s�1 and R0 = 3 m were chosen. The computational

domain was taken to be a square with sides 40 m long. The l2 norm errors at various resolutions are shown

in Table 2 for the approximation of the U velocity component. The error behavior in the l1 norm is much
worse and is not reported here. Actually, some of the errors are related to the piecewise linear representa-

tion of the curved boundary and to the large gradients displayed by the specific field (19) close to the bound-

aries. Furthermore this can be considered as a worst case scenario, since the velocity field considered has a

highly localized maximum at the downstream boundary of the cylinder. A milder test can be performed by

considering a simple rotation around the cylinder, whose corresponding vector field is given by
U ¼ �ðy � y0Þ V ¼ ðx� x0Þ: ð20Þ

Results for this case yield l2 norm errors approximately one order of magnitude smaller, with similar

estimated convergence rates. As it will be shown in Section 8, this poor convergence behavior does not have

a significant impact on the quality of the simulation results, especially if this linear reconstruction technique
2

acy of the linear reconstruction for the velocity field on a Cartesian grid with cut cells: potential flow

l2 error Estimate of convergence rate in l2

4.0 · 10�4 –

1.1 · 10�4 1.8

7.9 · 10�5 0.5

2.5 · 10�5 1.7
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is used only in the computation of the approximated trajectories. In this case, the use of the linear recon-

struction procedure is actually very convenient to make sure that approximated trajectories are not crossing

the domain boundaries.
6. Numerical tests on the accuracy of the trajectory approximation

In order to analyze the impact of the proposed reconstruction algorithm on the accuracy of the trajec-

tory approximation, as a first test a stationary velocity field was prescribed and the approximated semi-

Lagrangian trajectories were compared to the field streamlines.

The velocity field was given by assuming potential flow around a cylinder as in (19). The semi-Lagran-

gian trajectories were computed numerically by backward integration in time, as in the semi-Lagrangian

approaches described in [5,8]. The total integration time T and the asymptotic horizontal velocity U0 were
chosen so that the ratio T U0/R0, which can be interpreted as a Courant number based on the dimension of

the obstacle, is equal to 1
2
. Avoiding that the particles jump over the obstacle within one semi-Lagrangian

time step appears to be an appropriate requirement for an accurate representation of the flow (see e.g. the

discussion in [2]). Varying the spatial resolution Dx, different values of TU0/Dx are obtained, which corre-

spond to the Courant number in a semi-Lagrangian timestep of length T.

In each substep, an interpolation is needed to reconstruct the complete velocity vector from its pre-

scribed normal components. This was done using the algorithm of Section 5. The exact streamlines were

computed solving the system of ODE (7) with velocity components given by Eqs. (19) without any inter-
polation and using a Runge–Kutta–Verner sixth-order method with a timestep approximately equal to

10�6T. A number of trajectories crossing various cut boundary cells were computed and i, li1 and li2 errors
were evaluated along each trajectory i. Some of the exact and computed trajectories are shown in Fig. 8, for

the upstream and downstream part of the boundary, respectively.
Fig. 8. Exact and computed backward trajectories in potential flow around a cylinder. Trajectory departure points are placed either

upstream (a) or downstream (b) of the obstacle.
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The maximum value and the mean value over the ensemble of li1 and li2 were then considered. These

error estimates, normalized by the value of R0, are shown in Fig. 9 for various values of the ratio

R0/Dx, which is approximately half the number of cells used to represent the obstacle. As a comparison,

the values of the error indicators are reported for the same test with the cylinder approximated by full

square cells. The values in the test with full cells are denoted by full symbols and have been computed only
for the largest ratio R0/Dx. It can be observed that cut cells yield on average a reasonable approximation

even when the obstacle is only marginally resolved, which is extremely important in many environmental

applications to domains with complex topographic and orographic features.
7. Interpolation algorithms based on radial basis functions

For applications to problems with complex geometries, the stencils required by standard high order La-
grange or spline interpolations include in general a number of points beyond the domain boundaries. To

overcome this problem, radial basis function (RBF) interpolators will be used in this paper. In this section

it will be shown that RBF interpolators allow to achieve higher accuracy throughout the computational

domain on a Cartesian grid with cut cells. RBF are an interpolation technique for scattered multivariate

data that has been studied in depth over the last two decades (see e.g. the review in [6]). When appropriate

radial basis functions are chosen (for example the multiquadric function /ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðt�Þ2

q
, where � repre-

sents the reciprocal of a spatial scale), spectral convergence rates can be achieved for RBF interpolation (see
e.g. [28,32]). In some cases, it can be shown that also the interpolated function derivatives can be approx-

imated just as accurately by the derivative of the RBF interpolator. RBF techniques have been applied e.g.
Fig. 9. Errors in the computation of the trajectories in potential flow around a cylinder. Empty symbols refer to the values obtained

with cut cells.
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in [35] to high order reconstructions for accurate finite volume schemes and in [3] to semi-Lagrangian

advection on adaptive unstructured grids. Similar interpolation approaches based on the kriging technique

have also been applied successfully in [26].

Although the purpose of this paper is not to discuss RBF interpolation as such, their effective accuracy

and robustness for the reconstruction of scalar and vector fields on Cartesian grids with cut cells will be
demonstrated in this section by simple examples. We believe that these apparently trivial tests are necessary,

since the theoretical framework in which the convergence proofs are usually carried out (no boundaries,

infinite stencils) does not provide sufficient confidence that the technique is applicable under more realistic

conditions. In [23], a convergence theorem for local (i.e., with finite size stencil) RBF interpolation with thin

plate splines is given. However, this does not extend to multiquadrics interpolation, so that an empirical

estimation of the convergence rates for these interpolation procedures is appropriate. Furthermore, the role

of the spatial scale was not investigated in any of the previously quoted papers.

First of all it should be remarked that, even for standard Cartesian grids, RBF interpolators can provide
accurate, fully multidimensional interpolation algorithms whose computational cost is not much greater

than that of more standard techniques, such as e.g. tensor product Lagrange interpolation. As an example,

the asymptotic behavior of the l2 and l1 errors in the RBF interpolation of the function f(x,y) = sin(2kpx)-
sin(2kpy) on the unit square is shown in Table 3 for the case k = 4. The estimated convergence rates have

been computed by the formula
Table

Accura

Dx

5 · 10�

2.5 · 1

1.25 ·
6.25 ·
3.125 ·

Table

Accura

Dx

5 · 10�

2.5 · 1

1.25 ·
6.25 ·
3.125 ·
rate ¼ �log2
errorðDxÞ
errorð2DxÞ ;
where the error is computed either in the l2 or l1 norm.

For this test, a stencil of N = 10 points was used and the RBF interpolator was constrained to fit linear

polynomials in x,y exactly (see e.g. [6]). It can be noticed how fourth order l1 estimated convergence rate is

reached using a stencil that is in fact smaller than that of tensor product Lagrange interpolation. The cor-

responding results for the approximation of of
ox are shown in Table 4.
3

cy of RBF interpolators on a Cartesian grid

l1 error l2 error Estimate of convergence

rate in l1

Estimate of convergence

rate in l2
2 7.0 · 10�2 1.8 · 10�3 – –

0�2 5.0 · 10�3 6.5 · 10�5 3.8 4.8

10�2 3.3 · 10�4 2.1 · 10�6 3.9 4.9

10�3 2.1 · 10�5 6.6 · 10�8 4.0 5.0

10�3 1.3 · 10�6 2.1 · 10�9 4.0 5.0

4

cy of RBF interpolators for x-derivative reconstruction on a Cartesian grid. Results for the y direction are similar

l1 error l2 error Estimate of convergence

rate in l1

Estimate of convergence

rate in l2
2 9.7 · 10�2 2.6 · 10�3 – –

0�2 1.3 · 10�2 1.7 · 10�4 2.9 3.9

10�2 1.7 · 10�3 1.1 · 10�5 2.9 3.9

10�3 2.1 · 10�4 6.8 · 10�7 3.0 4.0

10�3 2.6 · 10�5 4.1 · 10�8 3.0 4.1
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Furthermore, � was chosen so that the corresponding spatial scale was 1/4 of the domain size. It is to be

remarked that the quality of the results was found to be sensitive to the appropriate choice of this scale.

Essentially, when higher wave numbers were considered, better results could be obtained with smaller val-

ues of the spatial scale (i.e., larger values of �). In view of the application to standard hydrodynamical mod-

els without multiscale features, some robust general rule must be found, which ensures sufficiently accurate
results independently of the specific features of the flow. In the tests we have performed, good results were

obtained when the scale was determined by the geometry of the domain, as a fraction of the domain size or

of the typical size of the boundary features. For example, it could be observed that with a fixed scale cor-

responding to 1/4 of the domain size, third order accuracy was maintained up to wavenumber k = 32.

Other tests concerned the convergence behavior on grids with cut cells. The potential flow velocity field

given by (19) was again reconstructed on the Cartesian grid with cut cells. For this test, the values U0 = 10

m s�1 and R0 = 3 m were chosen. The computational domain was taken to be a square with sides 40 m long.

The behavior of the l2 and l1 errors is shown in Table 5 for the approximation of the U velocity
component.

For this test, a stencil of N = 10 points was used, the RBF interpolator was constrained to fit linear pol-

ynomials in x,y exactly and the spatial scale was fixed as R0/2. The stencil was built in such a way as to

include only gridpoints within the computational domain, belonging either to cut or full cells. It can be ob-

served that the estimated convergence rates for the values of the vector components are always above first

order in the l1 norm, while the derivative approximation displays estimated convergence rates of approx-

imately first order in the same norm. Comparing the results with those obtained with the linear interpolator

described in Section 5, it was observed that, in general, the errors obtained with the RBF interpolators were
about one order of magnitude smaller in cut cells or cells close to the boundary. The typical error distribu-

tion around the cylinder is shown in Fig. 10 at resolutions Dx = 0.25 m (see Table 6).

It should be remarked again that this can be considered as a worst case scenario, since the velocity field

considered has a highly localized maximum at the downstream boundary of the cylinder. As in Section 6, a

milder test can be performed by considering solid body rotation around the cylinder. In this case, the radial

basis function gives a relative l1 error equal to zero, within machine accuracy, even on the coarsest of the

grids considered in the previous test. This shows that a basic property of RBF interpolators with linear pol-

ynomial constraint (i.e., exact reconstruction of linear functions) is preserved also on grids with cut cells.
8. Numerical tests on the accuracy of semi-implicit semi-Lagrangian models

Several numerical tests were performed with two-dimensional models of fluid flow, in order to assess the

effective accuracy of discretizations of the complete nonlinear equations of motion using the semi-implicit

discretization outlined in Section 2 and the reconstruction algorithms introduced in the previous sections.

Nonlinear advection is computed by a semi-Lagrangian scheme, as it would happen in a realistic applica-
tion. The tests considered include two-dimensional open channel flow, as an example of an application to
Table 5

Accuracy of RBF interpolators for the x component of the velocity on a Cartesian grid with cut cells

Dx l1 Error l2 Error Estimate of convergence rate in l1 Estimate of convergence rate in l2

1 3.7 · 10�2 3.1 · 10�4 – –

0.5 1.1 · 10�2 4.5 · 10�5 1.8 2.8

0.25 2.8 · 10�3 4.4 · 10�6 1.9 3.4

0.125 1.0 · 10�3 5.5 · 10�7 1.5 3.0



Fig. 10. Error distribution in RBF reconstruction of potential flow field (U component) at resolution Dx = 0.25 m. The color scale is

logarithmic.

Table 6

Accuracy of RBF interpolators for ou/ox reconstruction on a Cartesian grid with cut cells

Dx l1 Error l2 Error Estimate of convergence rate in l1 Estimate of convergence rate in l2

1 5.7 · 10�1 1.6 · 10�3 – –

0.5 3.3 · 10�1 5.5 · 10�4 0.8 1.6

0.25 1.8 · 10�1 1.3 · 10�4 0.9 2.0

0.125 1.0 · 10�1 4.7 · 10�5 0.8 1.5
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free surface hydrodynamics, and stratified air flow over an obstacle, in the context of typical lee wave test

cases for an x � z vertical slice mesoscale model.
8.1. Open channel flow

As a first test, uniform flow in a straight open channel with rectangular section was considered. The

channel was oriented at a = 22.8� with respect to a rectangular Cartesian mesh with Dx = Dy equal to
1 m. The width of the channel was taken to be 10cosa m and the discharge at the inflow boundary was

10 m3 s�1; the Chézy coefficient was taken to be equal to 70 m1/2 s�1 and the bottom slope ib was taken

to be 0.001. The analytical solution is given by a water depth of 0.618 m and the velocity field with absolute

value equal to 1.741 m s�1 and inclination parallel to the channel boundaries. The Froude number was

equal to 0.707 and therefore the flow was subcritical.

For this test, the linear reconstruction algorithm introduced in Section 5 was applied for the computa-

tion of the trajectories and for the interpolation at the departure points ~x�. Simulations were performed

using a timestep equal to 2 s and therefore the Courant numbers with respect to the velocity were equal
to 3.23 and 1.28 in x and y directions, respectively. At the upstream boundary, the water discharge was

imposed. For Lagrangian paths leaving the domain, ghost cells were added at the beginning of the channel

assuming uniform flow with the same features as in the first row of cells inside the computational domain.

At the downstream boundary, the water depth was prescribed. The simulations were initialized with various

possible initial conditions and were run until a steady solution was found. Results were found to be





(a) (b)

Fig. 11. Water depth (m) at steady state for open channel flow in a curved channel with cut boundary cells (a) and with full boundary

cells (b).

Table 8

Values of Dg computed for steady state curved channel flow computed with cut cells at various horizontal resolutions

b/Dx = 5 b/Dx = 10 b/Dx = 25 b/Dx = 50 b/Dx = 100

Dg [m] 4.23 · 10�3 4.36 · 10�3 5.00 · 10�3 5.22 · 10�3 5.23 · 10�3
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points~x�. It is to be remarked that the role of the linear reconstruction is essential in imposing the appro-

priate boundary condition. If for example the RBF interpolator is used in the trajectory computation as

well, erroneous results similar to those in Fig. 11(b) are obtained.

8.2. Stratified mesoscale flows

The velocity reconstruction algorithms described above were also implemented in the context of the

semi-implicit, semi-Lagrangian scheme for the fully elastic Euler equations described in [4]. An implemen-

tation of this discretization on an x–z two dimensional vertical slice was used. The cells intersected by the

lower boundary were treated as cut cells in the sense explained in the previous sections. The hydrostatic

lee wave test case analyzed in [16] was considered first. An initially uniform horizontal flow with hori-

zontal speed at inflow equal to U = 10 m s�1 hits a hill whose shape is given by a versiera of Agnesi curve

and whose height and half-width are h0 = 400 m and a = 10,000 m, respectively. A uniformly stratified

atmosphere is assumed, with Brunt–Väisälä frequency equal to N = 10�2 s�1. The vertical resolution
was taken to be Dz = 150 m and the horizontal resolution was taken to be Dx = 2000 m. All the further

details concerning the test case can be found in [16]. In the lowermost cells of the computational domain,

the linear reconstruction algorithm described in Section 5 was applied for the computation of the trajec-

tories, while the RBF interpolator described in Section 7 was used for the interpolation at the departure

points ~x�. The stencils used for the RBF interpolator include up to 16 points surrounding the cells where

interpolation is to be performed. In cells away from the boundary, standard bilinear interpolation was

used for the computation of the trajectories, while cubic Lagrange tensor product interpolation was used



Fig. 12. Convergence of free surface profiles in a curved channel flow (radial section at 45�) with cut boundary cells. Profiles are

normalized with the constant steady state value h0 in the downstream straight reach.

(a)

(b)Fig. 13

following model (b)2 Contour spacing is 1 K.
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for the interpolation at the departure points ~x� (see e.g. [4,30]). The results in Section 7 would justify the

application of RBF interpolation throughout the whole computational domain. However, since cubic La-

grange tensor product interpolation is generally regarded as sufficiently accurate and considering that effi-
2 Potential temperature field in the hydrostatic lee wave test case, computed with cut cell model (a) and with LM terrain
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cient implementation of RBF requires storage of a number of auxiliary fields, the simpler Lagrange inter-

polation approach was used away from the boundaries. The results obtained with the cut cell approxi-

mation are shown along with a reference solution obtained with Lokal Modell (shortly LM, see e.g. [38]),

a mesoscale model developed at the German Weather Forecasting Service (DWD), which is used oper-

ationally for local weather forecasting at many European weather centers including ARPA Bologna. LM
employs terrain following coordinates, a split-explicit time discretization for the sound waves and a spa-

tial discretization based on centered finite differences. It employs temperature and pressure as prognostic

variables, while the semi-implicit, semi-Lagrangian cut cell model uses Exner pressure and potential tem-

perature. In Fig. 13 the contours of the potential temperature field are shown, which correspond to the

streamlines in this adiabatic case. In Fig. 14 the deviation of the horizontal velocity component from the

mean inflow value is shown. In Fig. 15 the vertical velocity component is shown, while in Fig. 16 a plot

of the f = ou/oz � ow/ox component of vorticity is shown. It can be observed that the results are in good
(a) (b)

Fig. 14. Deviation of u velocity component from the inflow value in the hydrostatic lee wave test case, computed with cut cell model (a)

and with LM terrain following model (b). Contour spacing is 0.5 m s�1.

(a) (b)

Fig. 15. w velocity component in the hydrostatic lee wave test case, computed with cut cell model (a) and with LM terrain following

model (b). Contour spacing is 0.07 m s�1.



(a)(b)Fig. 16. Vorticity in the hydrostatic lee wave test case, computed with cut cell model (a) and with LMFig. 17.wvelocity component in the nonhydrostatic lee wave test case, computed with cut cell model. Con
qualitative and quantitative agreement with the reference solution. Both the cut cell results and those

computed with LM are in good agreement with the analytic solution for the corresponding linearized

equations, as reported for example in [15,16]. For example, the lowest minimum in the vertical velocity

field has the same value around �0.45 m s�1 at a height of approximately 1700 m. The nonhydrostatic lee
terrain following model (b).Contour spacing is 10�3s�1.tour spacing is 0.25 m sff1.374G. Rosatti et al. / Journal of Computational Physics 204 (2005) 353–377
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wave test case analyzed in [16] was also considered. The setup is the same as in the previous case, but the

mountain half-width is now and a = 1000 m. The vertical resolution was taken to be Dz = 150 m and the

horizontal resolution was taken to be Dx = 200 m. In Fig. 17 the vertical velocity component is shown. It

can be observed again that the results are in good qualitative and quantitative agreement with the ana-

lytic solution for the corresponding linearized equations (see e.g. [16], Fig. 1(c)). Furthermore, it can be
observed that these results are achieved at a much coarser vertical resolution than used for example in

the nonhydrostatic Eta model discussed in [16], for which Dz = 10 m was necessary to obtain comparable

results (see Figs. 7(a) and (b)).
9. Conclusions and future developments

Semi-implicit, semi-Lagrangian models for environmental applications have been extended to stag-
gered Cartesian meshes with cut boundary cells. Radial basis function interpolation and a linear

reconstruction algorithm have been used to recover an accurate velocity field close to the boundary.

Timestep control techniques in the computation of the semi-Lagrangian trajectories have also been

proposed. The accuracy of the resulting numerical method has been assessed in a number of test

cases, relevant for river hydraulics and mesoscale atmospheric modelling. Extensions of the tech-

niques introduced here are being investigated for the application to three-dimensional numerical

models of coastal hydrodynamics and mesoscale flow. In order to extend the algorithm to the

three-dimensional case in a straightforward way, it is planned to develop linear reconstruction pro-
cedures analogous to that of Section 5 for the whole stack of cells intersected by the bathymetry or

orography.
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